
Gröbner Bases

This is just meant to be a thought dump on Gröbner bases. My goal is for the following discussion
to be such that it would lead one to the definition of a Gröbner basis. I’m not going to talk about
monomial ordering. This discussion is for someone who has already done division in k[x], and is
familiar with the division algorithm in k[x1, . . . , xn].

Let’s start with a simple example to show that there is a problem with the extended division
algorithm. Let’s try to see if f = xy2 − x is divisible by (f1 = xy − 1, f2 = y2 − 1)1 If we followed
the order f1, f2, then we’d find that

xy2 − x = y(xy − 1) + (−x + y),

giving us a remainder of y − x. However, if we tried to divide by (f2, f1), we get

xy2 − x = x(y2 − 1) + 0,

giving us a remainder of 0. Now, this non-uniqueness of remainder is clearly something we’d like
to remedy. Trying to suggest that (f2, f1) is somehow a better order than (f1, f2) is a non-starter
because we can easily construct an example where choosing (f2, f1) would give us a non-zero re-
mainder, while choosing (f1, f2) would give us a remainder of 0.

Idea 1. Suppose we are trying to divide by {fi}.a If we find {gi} such that, for each gi,

gi =
∑

h
(i)
j fj ,

and it turns out that dividing by gi is easier, then we are in better shape. This is because if we
use {gi} to divide, it is as good as dividing by {fi}. This immediately suggests that we
employ the language of ideals.

aThe {ai} notation just means that we have a finite set such as {a1, . . . , ar}, and we are not referencing r
because it is just not important for our discussion.

In the language ideals, checking if {fi}|f is equivalent to checking if f ∈ 〈{fi}〉. However, even
with the new language, we haven’t made any progress. {fi} is the generating set of the new ideal,
and we are no better off than before. What we need is a better generating set/basis.

In the language of ideals, what was the problem with the example shown earlier? When we use the
order (f1, f2), we obtain −x + y as a remainder. The problem is that we couldn’t go any further
by using the division algorithm. Say we somehow knew that

−x + y = yf1 − xf2.

Then we’d have no trouble deducing that our f that we began with was indeed divisible by {f1, f2}.
Our problem was that LT (−x + y) was not divisible by either LT (f1) or LT (f2).

1The (·, ·, . . .) notation is meant to denote ordered tuples.
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Note: −x + y was formed with multiplying both f1 and f2 with monomials so as to form the
LCM of the leading terms of f1 and f2, and then cancelling it out. In fact, the notion of an
S-polynomial/S-pair comes from this very observation, and in turn leads us to Buchberger’s
algorithm.

Idea 2. This leads us to realize that we need a generating set {gi}i∈[s] of our ideal I = 〈f1, f2〉
that is such that for any f ∈ I, we have that there exists an i∗ ∈ [s] such that LT (gi∗) | LT (f).

Idea 2 is basically the definition of a Gröbner basis. A Gröbner basis is defined exactly as what is
needed according to Idea 2. By ensuring that we have a gi∗ whose leading term divides LT (f) for
all f ∈ I, we are certain to always be able to get a remainder of 0 when f ∈ I. This is because
anything that is leftover after subtracting a multiple of gi from f is in the same congruence class of
f , modulo I.

It is fairly reasonable to assume that one would get upto to this point, but how does one even hope
that such a generating set would exist? How can we even hope that it would be finite? Keep in
mind that Buchberger’s algorithm actually tells you how to find it. The transition from wondering
if such a generating set could even exist to actually being able to always find it is possible because
of an equivalent definition of a Gröbner basis.

Definition 1. Define LT (I) = {LT (f) | f ∈ I}. The set {gi}i∈[s] ⊆ I is a Gröbner basis if
I = 〈{gi}i∈[s]〉 and

〈LT (I)〉 = 〈{LT (gi) | i ∈ [s]}〉.

That this definition is equivalent to what we expressed in Idea 2 is an exercise left to the reader. I
am more interested in discussing how one would have arrived at this language. Apriori, I feel it is
extremely unnatural to define 〈LT (I)〉 and 〈{LT (gi) | i ∈ [s]}〉. How then?

Remember, we want, for all f ∈ I, LT (f) = m∗LT (gi) for some i and m a monomial. So naturally
we would take a look at the set LT (I). Let us form all possible m ∗ LT (gi). It is just the set

{LT (f) ∗ LT (gi) | i ∈ [s], f ∈ k[x1, . . . , xn]}.

We want the above set to contain LT (I), i.e. we want {LT (gi)LT (f) | i ∈ [s], f ∈ k[x1, . . . , xn]} ⊇
LT (I). Since gi ∈ I, we have that giLT (f) ∈ I for all f ∈ k[x1, . . . , xn]. This in turn means that
LT (gi)LT (f) will be in LT (I) thus proving that {LT (gi)LT (f) | i ∈ [s], f ∈ k[x1, . . . , xn]} ⊆ LT (I).
Thus we can say that the necessity expressed in Idea 2 is equivalent to needing

{LT (gi)LT (f) | i ∈ [s], f ∈ k[x1, . . . , xn]} = LT (I),

as sets. Since we need them to be the same as sets, we can just say that we need

〈{LT (gi)LT (f) | i ∈ [s], f ∈ k[x1, . . . , xn]}〉 = 〈LT (I)〉.

Finally, 〈{LT (gi)LT (f) | i ∈ [s], f ∈ k[x1, . . . , xn]}〉 may as well be written as 〈{LT (gi) | i ∈ [s]}〉,
thus giving us the condition in Definition 1.

N.B. Actually the above discussion only proves that 〈LT (I)〉 = 〈{LT (gi) | i ∈ [s]}〉 is a suffi-
cient condition for what is expressed in Idea 2. It is also a necessary condition, but that needs
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a proof. Proving it is a necessary condition requires the observation that if we have a monomial
m ∈ I = 〈{mi}〉, where mi are also monomials, then there exists an i∗ such that mi∗ | m.

The advantage of moving to the new language to define Gröbner bases is that 〈LT (I)〉 is now a
monomial ideal, and we have results like Dickson’s lemma that show to us that Gröbner bases will
always exist and also show us how to find them.
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